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model for a polymer chain in dilute solution 
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Sapan 

Received 4 July 1975 

Abstnwt. An exactly solvable lattice model is presented for discussing the phase transition 
of a very long polymer chain in dilute solution. The model is a self-avoiding walk model on a 
generalized cactus tree. The average end-to-end distance is discussed in addition to the free 
energy, energy, entropy, and specific heat. 

I (ahwluction 

k m d e l s  are often used to discuss the properties of high polymers (see Dk”zi0 
dabh 1958, Nagle 1974). When we are concerned with a polymer chain in dilute 
wn, the Om model is widely used (Orr 1947, Fisher and Hiley 1961). In that 
&l,aplymer chain is represented by a self-avoiding walk on a regular lattice and an 
mdveinteraction is assumed between each pair of nearest-neighbour sites which the 
&passes. Recently Massih and Moore (1975.) proposed the crossing model, in which 
@per chain is represented by a walk which can use the same lattice site more than 
Qlce but cannot use a lattice bond twice. An attractive interaction is associated with 
&Site at which the walk crosses. These authors gave an exact calculation for the case 
denthe basic lattice is the cactus tree, that is, the Husimi tree consisting of triangular 
Moeks. In the present paper, we present a generalized cactus tree lattice and show that 
hhmodel on that lattice is solved by a similar procedure. 

fie lattice we consider consists of polygons of an even number 2 p  of edges. Every 
&redge of a polygon is commonly used as an edge by ( v  - 1) other polygons, where 

If we remove a bond commonly used as an edge by v polygons, and the sites on 
&sides, then the lattice is decomposed into Y separate parts. We give an example of 
*alattice in figure 1. In this lattice, two hexagons use the same bond as an edge, 
&R2p=6 and v = 2. In this paper, we shall pay special attention to this lattice and 
tbe‘atti@where three hexagons use the same bond as an edge, where 2g = 6 and v = 3. 
7beselathxs are considered to correspond to the plane hexagonal and the diamond 
hJesPectively. We shall also consider the lattice composed of squares ( 2 p  = 4) and 
O‘O#agons (2p = 8). 

*@mer chain is represented by a self-avoiding walk on these lattices. A 
?avoiding walk may pass a nearest-neighbour pair of sites on the lattice. If those 

directly connected by one step of the walk, we call the pair a non-trivial 
?%$dmr pair of sites on the walk and associate potential energy - J ;  J being 
hewhen the interaction is attractive. 
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F i i  1. The lattice of hexagons with v = 2. Small circles are drawn at the centresd& 
hexagons. If one connects the circles on the nearest-neighbour hexagons, one obhiml 
Cayley tree; one would obtain a cactus tree of triangles if v = 3. 

2. Freeenergy 

The calculation follows the one given by Massih and Moore (1975). One of the bonds 
connected to a site is commonly used by U nearest-neighbour polygons as an edge. We 
consider the site 0 which is connected to the one 0 at the origin via such a bond;= 
figure 1 .  We introduce the function AN( W )  for the self-avoiding walks of N steps which 
start at the site 0 and end at its nearest neighbour 0’ either via any of (v- 1) of v 
polygons using 00 as an edge if N >  1, or by the direct step if N = 1. If we denote b 
uN.r the total number of such walks in which there occur t non-trivial nearest-neighbour 
pairs of sites on the walk, AN( W )  is defined by 

where w=exp(J/k,T), kB is the Boltzmann constant and T is the absolute 
temperature. We note A, (w)  = 1. The generating function for A N ( w )  is definedby 

cu 
A(z,  w ) = A =  A , ( w ) z ~ .  (2) 

N =  1 

For the lattice composed of hexagons, we note the following relations: 

for N >  1, and obtain 

A = z +(U - 1 )  wz3A2. (3) 
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d. BY solving (3) or (41, we have 
ipP 

A = 1/[1- ( Y  - 1) W Z ~ ] ,  2 p  = 4, ( 5 4  

2 p  = 6, (5b) 

A = 2 sin(0/3)/[3(v- ~ ) W Z ~ ] ” ~ ,  2 p  = 8, ( 5 c )  
A ={1- [ 1 -4( v - 1) W Z “ ] ” ’ } > / [ ~ (  U - l)wz3], 

6 is given by 
sin 8=[27(v- l)wz6/4]’”. 

q q d i n g  these expressions in powers of z, we can obtain explicit expressions for 
~ ( w f .  For instance, we have for 2 p  = 6 

Pheren=O, 1,2,. . . . 
”he properties of our system, a chain of N bonds, are discussed with the aid of the 

partition function QN( w ) ,  which is defined by 

Q d w ) = C  CN.rW1, (7) 
I 

pherecN,, is the total number of self-avoiding walks of Nsteps, starting from a site, eg 0 
m@e 1, and having t non-trivial nearest-neighbour pairs of sites on the walk. The 
generating function for Q,(w) is introduced by 

It is expressed as 

G(z, w ) = z + Y w z ~ A ~ - ’ + u C I + U A C ~ ,  (9) 

*reA is given by (5a,b,c) when 2 p  = 4,6,8 and by a solution of (4) for general 2p.  CI 
kkgenerating function for those self-avoiding walks of Nsteps ( N a  1) which start at 
OqgO to X by the first step and never return to 0’; cf figure 1. zC2 is the one for the 
Ehoidingwalks of ( N +  1) steps ( N s  1) which start at Of, goes to 0 by the first step, 
&then to X by the second step. CI and C, are determined as the solutions of the 

‘ [ = d l  +A)(1 

‘2=z(1 +A)(  1 +zA)P-~ + (w - l)zP-’AP-’ + z(1+ zA)”’(~ C,+ Z [ Z  + (V -21.41 

coupled equations: 

z ( I +  Z A ) ’ - ~ ~ ,  C, + Z [ Z  + ( v - 2)A]( 1 + ~ A ) ~ - ~ 5 2 C z ,  (10) 

X [ ( ~ + z A ) ~ - ~ + ( w  - ~ ) Z ” - ~ A ~ - ~ I & C ~ .  (11) 
Here Parameter t1 or & is associated with each polygon which the walk leaves for a 
POIygon other than the one from which it comes. They are used in order to give the 

for the average end-to-end distance. In other situations, they are put equal 
“%The solutions C1 and C, of (10) and (1 1) diverge at the zero of the determinant 
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D(z, w, t,, &)= 

1 -z(l  + zA) ’ -~~ I  

- Z ( I + Z A ) ~ - ~ [ ~  1 - Z [ Z + ( V - ~ ) A ] [ ( ~ + Z A ) ~ - ’  

-Z[Z +(~-2)A](1 +ZA)~-’& 

+ ( w  - ~)Z’-~A~-’ ]& 
(1.2) 

(13) 

For large N, the behaviour of Q N ( w )  is determined by the singularity of G(z,wi 
nearest to the origin, By (9H12) and (6), we note that the singularities of G(z, w)an 
singufarities of A and the poles at the zeros of (121, which are the poles of C, and q 
The singularity of A, nearest to the origin, will be denoted by P ( w ) .  When 2 p  =4, (54 
shows that there is a pole at z = /3( w )  = l/[(v - 1) w ] ” ~ .  When 2 p  = 6 8 ,  . . . , we note 
that there is a branch point at 

(14) 
1 / 2 ( p -  1) z = B( w )  = [ ( p  - 1)/PI1WP(V - 1) wl  

by using (4); this result is seen directly from (5b,c) for 2 p  = 6,8. The singularity of 
G(z, w ) ,  nearest to the origin, is either p ( w )  or a pole with absolute value less than 
p(w).  When the latter is the case, we shall denote the pole nearest to the origin asa(w). 
It is real and positive, since all the coefficients QN(w) of the power series expansion(8) 
are positive. The a ( w )  is obtained numerically as a real solution OI 
D(a(w), w, 1, 1) = 0. 

The results for 2p = 6, v = 2 and 2 p  = 6, v = 3 are shown in figure 2 ,  where In a(w) 
and In p ( w )  are plotted as functions of In w. We have a similar figure for 2p =8, v=2 
and 3. a ( w ) ,  which is positive and less than /3(w),  appears if 

-a€J/kBT<J/kBTc.  (15) 

F-2. Thefreeenergy,In (~ (w)andinB(w) ,aga ins t i /k ,~= in  W, f o r 2 p = 6 , ~ ‘ 2 ~  
=3.  The full circles show the places where the curves for In a(wf terminate. 
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pc&values J/k,T, = In w, are obtained by solving D(p( w,), w,, 1 , l )  = 0 and are 
dm@blelfor2p=6,8andV=2,3.  If J>O,(15)isalwayssatisfied. If J>O,itis 
@only when T >  T,. Now we have 

(16) 

lj<oorif D O  and T> T,. On the other hand, if J>O and T <  T,, we have 

(l/N In Q d w )  - -In 4 w ) ,  

@ad in the following, ' - ' are replaced by ' = ' in the limit of N +  03. 

Table 1. Critical valuesof J/k,T,. 

v = 2  v = 3  
~~ 

2p=6 2.06686.. . 3.58582.. . 
2 p = 8  3.52828..  . 4.24517..  . 

1 Average end-to-end distance 

tkre,weshall consider the self-avoiding walks starting at 0 and ending at any one of its 
aearest neighbours. We denote the total number of such walks of N steps, having t 
mtrivial nearest-neighbour pairs of sites on the walk by bN,r. Its generating functions 
&(U) and B(z,  w )  are defined by 

BN(w)=C bN,Iwr,  
r 

B(z ,  W)=B=CBN(W)ZN. 
N 

wecan see that B is expressed in terms of A as follows: 

(20a) 
V 

[A2 + (vz - 2)z2]. B=(Y+l)z t- 2 V  (A - z )  +- V (A -z)~=-  
V - 1  (v-1)z (v-1)z 

&ksingularities of B are all equal to the singularities of A, BN(w) is estimated as 
b W S :  

(l/N)lnB,(w)--lnp(w). 
hparticular, when 2 p  = 6 ,  we use (3) in (20a) and obtain 

IbeexPansion coefficients of both sides are related by 
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AJw) are given by (6). For large n, we have 

In ~ ~ " + ~ ( w ) =  n(jn[4(v-1)1+1n w)-$ln n+4~4/ .rr)+0(n-') .  (?lb) 
&mp&son of (17) and (21a,b) shows that the behaviour (17) results when Only& 
walks which return to a site near to the starting site have main contributions. n e a k  
may be called condensed state. 

The quantities C, and C, are the contributions which start at a polygon and nevff 
return. When the singularity a ( w )  where C, and C2 diverge plays an important role,& 
chain will be extended. It occurs when the interaction is repulsive or when temperah 
is sufficiently high. In order to see the situation, we shall give a calculation of & 
average end-to-end distance L, which is measured by the number of polygons WM 

must be passed in order to get from the polygon on which one end exists to the onem 
which the other end exists. It is calculated by 

where 

By (16) and (17), we have 

Li alna(w) 
lcI=l. & = I .  

--- 
N a ti 

when J/kBT€J/kBTc, and L f N - 0  when J/k,T>J/kBTc. From the equation 
D(a(w), w, &, 5;) = 0 determining a ( w ) ,  (24) is written as 

--- Li 1 ~ D ( G  W ,  (1, Sz)/a&( 
N .(W) m z ,  w, (1, 5*)/azIr*=1,&=1.Z=p(W) 

The results of the numerical calculation of L J N  and L/N for 2 p  = 6 at N + $  are 
shown in figure 3. We see that LIN in the limit of N +  00 is zero for the condensed phase 
and non-zero for the extended phase. 

When 2 p  = 4, we find that no phase transition occurs; a( w )  is always less than 
B(w) .  This is a consequence of the facts that, when J >  0, the ground state enera Fr 
bond -5/2 is achieved not only by the condensed state but also by the extended 5tafe. 
see figure 4; and that the entropy is greater for the extended state. 

4. Energy, entropy and specific heat 

In order to see further details of the phase transition, we shall draw the curvesof 
energy, entropy and specific heat. The total energy per bond is calculated by 

(3) E 1  a 
In Q N ( w ) ,  --_ 

N - N  a(-l/kBT) 
and then the entropy per bond by 

-- s 1  E --ln Q N ( w ) + -  
N k ,  N NkBT' 
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-----------.--- 

0.0 2.0 4.0 
JlkB T 

F@re 3. The energy E, entropy S, and the average end-to-end distance L, per bond, 
against J/k8T:  ( a )  for 2 p  = 6 ,  Y = 2 ;  and-(b) for 2 p  = 6 and U = 3. 

Fpre 4. Examples of the ground state configurations of a chain of N = 11 on the lattice 
with 2 p  = 4 and Y = 2: (a )  condensed state; and (b), ( c )  extended states. 

'k"iensed phase, we use (17) and obtain 
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For the extended phase, we have 

In the calculation, a In a(w) /a  In w is expressed as 

a h  a(w)  w aD(t ,  W ,  l , l ) / a w  
a ( w )  aD(z, w, 1, I)/az' 

-- - 
a h  w 

The curves of the energy and the entropy for N +  00 are given in figure 3 for 2 ~ ~ 6 ,  
v = 2  and 3. 

The specific heat C is calculated numerically by replacing aS/a(J/k,7)  
AS/A(J/kBV in 

The results for 2p = 6,8 and Y = 2 , 3  are shown in figure 5. At the condensed phase.& 
entropy given by (27) is constant and hence the specific heat is zero. 

Figme 5. The specific heat C against J/k ,T ,  for 2 p  = 6.8 and Y = 2 , 3 .  

FVhen 2p = 6 and Y = 2, general features of the curve for the entropy are 
those of the curve given by Massih and Moore (1975) for their model on the cactustres 
lattice. When 2p = 6 and v = 3, figure 5 shows that the specific heat has a hump sod, 
JIkeT-2'1, while the phase transition occurs at J/kBT=3.586. The curvSofLlis. 
and L d N  show that the hump is associated withthe increase of entropy when LI/' 

becomes an appreciable value. This transition occurs at higher temperatures than * 
phase transition where L2/N = ( L  - L , ) / N  becomes appreciable. The Curves Of the 
specific heat in figure 5 show that the situation is similar for 2p = 8. All the results@n 
in figures 2,3  aod 5 show that the phase transition of a very long chain on the latticeitb 
2p = 6 and 8 is of second order. 
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5 m i o n  

%freeenera, energy, entropy and end-to-end distance and specific heat are given in 
2 and 3 for a polymer chain of infinite length ( N +  00) on a special lattice of 

-6 and v = 2,3 .  The specific heat is given in figure 5 for the lattice of 2 p  = 8 as well '&, The phase transition of this system is of the second kind. For v = 3 ,  we 
a broad hump in the specific heat curve above the temperature of the phase 

a t i o n .  We expect that such a hump will be more pronounced for a lattice with a 
p l e r  V. In the phase transition of our model system, the entropy plays an important 
&. For a polymer chain on ordinary lattices, the energy will become more important. 
M e r i n g  that the phase transition is of lower order for the Ising model on the Bethe 

than for the Ising model on the ordinary lattice, we expect a second- or 
*-order transition than for the polymer chain on the ordinary lattice. This 
&@ion is different from a suggestion of Domb (1974). 

Is" 

k author is grateful to colleagues for valuable discussions. 

Dhnardo E A and Gibbs J H 1958 J. Chem. Phys. 28 807-13 
hobCI974 Polymer 15 259-62 
k M  E and Hiley B J 1961 J. Chem. Phys. 34 1253-67 
Kanih A R and Moore M A 1975 J. Phys. A: Math. Gen. 8 237-44 

OmwJ c 1947 Trans. Faraday Soc. 43 12-27 
k& J F 1974 ~ O C .  R. SOC. A 337 569-89 


